ON A WEAK SUM THEOREM IN DIMENSION THEORY*

BY

URI PRAT

ABSTRACT

A metric space $X = \bigcup_{i=0}^{\infty} X_i$ is constructed such that $X_0 = \{x_0\}$ consists of a single point $x_0, X_i, i = 0, 1, 2, \cdots$ are disjoint and closed, $X_i, i = 1, 2, \cdots$ are open, ind $X_i = 0$ for $i = 0, 1, \cdots$ and ind $X_i = 1$. The above space (proved to be, in some sense, most simple) shows also that the dimension ind of a metric space can be raised by adjoining of a single point, a fact proved recently by E.K. Van Douwen and by T. Przymusiński. Some maximality property of the family $\{X_i: \text{Ind } X = 0\}$ is proved and conditions implying P-ind = P-Ind are given.

1. Introduction

A family F of topological spaces will be said to satisfy wst (the weak sum theorem) if $X \in F$ whenever $X = \bigcup_{i=0}^{\infty} X_i$, where X_i are disjoint closed subsets of X and $X_i \in F$, $i = 0, 1, \cdots$. A dimension function d will be said to satisfy wst if $F = \{X : d(X) \le n\}$ satisfies wst, for $n \ge -1$.

In this note a metric space $X = \bigcup_{i=0}^{\infty} X_i$ is constructed where X_i , $i=0,1,\cdots$ are disjoint closed subsets of X and X_i , $i=1,2,\cdots$ are also open in X such that $X_0 = \{x_0\}$ is a one-point set. Ind $X_i = 1$ for $i=1,2,\cdots$, ind $X_i = 0$ for $i=0,1,\cdots$ and ind X=1. Thus the small inductive dimension d=1 ind does not satisfy wst. The above space X is also an example of a metric space showing that the dimension ind can be raised by adjoining of a single point x_0 , a fact proved recently by Eric K. Douwen in [7]** and by T. Przymusiński in [8]. As known, the dimension functions dim and Ind do satisfy quite strong sum theorems. It will be shown also that the metric space X constructed by us is in some sense the most simple one. It will be proved further that the family $\{X; \text{Ind } X=0\}$ contains every subfamily of $\{X; \text{ind } X=0\}$ satisfying wst. Finally, the property wst will be used to give conditions under which P-ind = P-Ind (for definitions of P-ind and P-Ind see [4] and [1] respectively; also [5], p. 326).

^{*}This is part of a research thesis at the Technion, Israel Institute of Technology, towards an M.Sc. degree, directed by Professor M. Reichaw.

^{**}For this reference I am indebted to Prof. A. Goetz.

In what follows only metric spaces will be considered.

2. An example of a metric space X for which d = ind does not satisfy wst.

To construct our example we shall use the following result of P. Roy [6].

(1) There exists a metric R such that Ind R = 1 and ind R = 0.

Now take the space R constructed by P. Roy and put $X = \bigcup_{n=0}^{\infty} X_n$ where $X_n = R \times \{1/n\}$ for $n = 1, 2, \cdots$ and $X_0 = \{x_0\}$ consists only of one point x_0 such that $x_0 \notin \bigcup_{n=1}^{\infty} X_n$. We define the topology in X as follows:

By Ind R=1 there exists a closed set $A \subset R$ and an open set U such that $A \subset U \subset R$ and such that

(2) for every open subset V satisfying $A \subset V \subset U$, V is not closed. closed.

Since R is a metric space there exists a sequence $\{U_k\}_{k=1,2,\cdots}$ of open sets satisfying:

(3)
$$U_1 = U, \ \overline{U}_{k+1} \subset U_k \ \text{ and } \bigcap_{k=1}^{\infty} \ U_k = A.$$

We denote $A_n = A \times \{1/n\}$, $U_k^n = U_k \times \{1/n\}$ $n, k = 1, 2, \cdots$ and $W_k = \{x_0\} \cup (\bigcup_{n=k}^{\infty} U_k^n)$. Let $B_0 = \{W_k\}_{k=1,2,\ldots}$ and let for n > 0, B_n denote a σ -locally finite base in X_n . Put $B = \bigcup_{n=0}^{\infty} B_n$. Then as trivially seen B is a base for a topology τ in X and we take X with this topology. Let us note the following properties of the topological space X:

(4a) Each
$$X_n$$
, $n = 1, 2, \dots$ is a homeomorphic copy of R and is a closed and open subset of X ,

$$(4b)$$
 X is metrizable.

Indeed, (4a) being evident it suffices by the Nagata-Smirnov theorem to show that X is a regular (Hausdorff) space and that B is a σ -locally finite base.

To show that X is regular we note first that $\overline{W}_{k+1} \subset W_k$ for $k \ge 1$. In fact, if $x \notin W_k$ then for some n > 0 one has $x \in X_n$. If $n \le k$ then $X_n \cap W_{k+1} = \emptyset$ and since X_n is open in X one gets $x \notin \overline{W}_{k+1}$. If $n \ge k+1$ then by $x \notin W_k$ one has $x \notin U_n^n$. Now by (3) $\overline{U}_{k+1}^n \subset U_n^n$ and so there exists an open set G with $x \in G \subset X_n$. Thus $G \cap U_{k+1}^n = \emptyset$. Hence also $G \cap W_{k+1} = \emptyset$ and again $x \notin \overline{W}_{k+1}$. Now let H be an arbitrary open subset of X and let $x \in H$. If $x \ne x_0$ then $x \in X_n$ for some n > 0. Thus $x \in H \cap X_n$ and since X_n is a metric space, there exists an open (in X_n and so by (4a) also in X) set G such that $x \in G \subset G \subset H \cap X_n \subset X_n$

H. (Note that since X_n is also closed in X the closure \tilde{G} of G in X_n coincides with that in X_n .)

If $x = x_0$ then $x \in W_k \subset H$ for some k > 0. But then as already noted $x \in W_{k+1} \subset \bar{W}_{k+1} \subset W_k \subset H$. We thus proved that X is regular.

The fact that X is a Hausdorff space is trivial.

It remains to show that B is a σ -locally finite base. But this is quite evident. Indeed, each B_n can be written in the form $B_n = \bigcup_{i=1}^{\infty} B_n^i$ where each B_n^i is locally finite. Arranging the double sequence $\{B_n^i\}_{m,i=1,2,...}$ into a sequence $\{C_k\}_{k=1,2,...}$ and adding to each C_k one set W_k , i.e. putting $C_k' = C_k \cup \{W_k\}$, one obtains that $B = \bigcup_{k=1}^{\infty} C_k'$ where each C_k' is locally finite. Thus (4b) is proved.

We prove now

THEOREM 1. The space $X = \bigcup_{n=0}^{\infty} X_n$ is a metric space such that $X_0 = \{x_0\}$ is a one-point set, X_n , $n = 1, 2, \cdots$ are closed and open in X, X_n , $n = 0, 1, \cdots$ are disjoint, ind $X_n = 0$, Ind $X_n = 1$ for $n = 1, 2, \cdots$ and ind X = 1. (Thus d = 1 ind does not satisfy wst.)

PROOF. By the definition of X and by (4a) and (4b) it suffices to show that $\operatorname{ind}_{x_0} X = 1$. (It is trivial that x_0 is the only point at which $\operatorname{ind} X = 1$.) Indeed, suppose to the contrary that $\operatorname{ind} X = 0$. Since $x_0 \in W_1$ there exists then a closed and open set G such that $x \in G \subset W_1$. Since G is open, there exists n such that $x_0 \in W_n \subset G$. Then $A_n \subset U_n^n \subset G \cap X_n \subset U_1^n$. But $G \cap X_n$ is closed and open in X_n contradicting (3), (2) and the definition of A_n and of U_1^n .

REMARK. It is easily seen that ind $\bigcup_{n=1}^{\infty} X_n = 0$ and so by $X = \{x_0\} \cup (\bigcup_{n=1}^{\infty} X_n)$, one gets that the small inductive dimension ind of a metric space can be raised by adjoining of a single point. Let us also note that our space X satisfying as proved in Theorem 1 ind X = 1 can be represented as a union $X = A \cup B$, where A and B are closed in X with ind A = ind B = 0. This can be done exactly as in [7] or directly by putting $A = X \setminus \bigcup_{k=1}^{\infty} (W_{4k} \setminus \overline{W}_{4k+2})$ and $B = X \setminus \bigcup_{k=1}^{\infty} (W_{4k+2} \setminus \overline{W}_{4k+4})$. Then since for each $i, W_i \setminus W_{i+2}$ is open in X, the sets A and B are closed in X. Also ind A = 0 since for every k the boundary $B(W_{4k+1})$ of W_{4k+1} is contained in $W_{4k} \setminus \overline{W}_{4k+2}$ and so $B(W_{4k+1}) \cap A = \emptyset$. Hence, $W_{4k+1} \cap A$ is a closed and open (in A) neighborhood of x_0 . Similarly one shows that ind B = 0.

3. A property of the X constructed in Section 2

In this section we shall show that the space X constructed in Section 2 is in some sense the most simple one. For this purpose we shall need the following:

LEMMA. Let X_i , $i = 0, 1, \cdots$ be metric spaces satisfying $\operatorname{Ind} X_i = 0$ for $i = 1, 2, \cdots$ and let $\operatorname{Ind} X_0 = 0$. Let $X = \bigcup_{i=0}^{\infty} X_i$ be a metric space such that X_i , $i = 0, 1, \cdots$ are closed in X. Then $\operatorname{Ind} X = 0$.

PROOF. The proof is similar to the proof of the sum theorem in [3, p. 14]. Suppose that $x \notin X_0$ and let $x \in U$ where U is open in X. Since X_0 is closed, there exists an open set W such that $x \in W \subset \bar{W} \subset U$ and $\bar{W} \cap X_0 = \emptyset$. By the sum theorem for Ind one has Ind $(\bigcup_{i=1}^{\infty} X_i) = 0$ and thus also Ind $(X \setminus X_0) = 0$. Hence there exists a closed and open (in $X \setminus X_0$) set V such that $x \in V \subset W \subset \bar{W} \subset U$. The set V is open in X, since $X \setminus X_0$ is open in X. Since $\bar{W} \cap X_0 = \emptyset$ one has also $\bar{V} \cap X_0 = \emptyset$ and so V is also closed in X.

The following theorem shows that in some sense the space X constructed in Section 2 is most simple.

THEOREM 2. Let $X = \bigcup_{i=1}^{\infty} X_i$ be a metric space, where X_i are disjoint and closed subsets of X satisfying ind $X_i = 0$ for $i = 1, 2, \dots$. If ind X > 0 then for infinitely many indices i one has Ind $X_i > 0$.

PROOF. Suppose to the contrary that there exists n such that Ind $X_i = 0$ for all i > n and put $X' = \bigcup_{i=1}^n X_i$. Since X_i are closed and disjoint one has ind X' = 0. Applying the lemma one obtains that ind X = 0, contradicting ind X > 0.

4. Property wst and the family $\{X : \text{Ind } X = 0\}$

Theorem 3 which will be proved in this section shows that the family

[†] A sorter proof (using the sum theorem for Ind) has recently been communicated to me by E. K. van Douwen.

 $\{X; \operatorname{Ind} X = 0\}$ contains every subfamily of the family $\{X; \operatorname{ind} X = 0\}$ satisfying wst. Let us recall that we consider only metric spaces. We introduce the following:

DEFINITION. Let Q be a non-empty topologically closed and monotone family of spaces. Put $d_Q(X) \le n$ if and only if there exist n+1 subspaces X_i of X such that $X_i \in Q$, $i=1,2,\cdots n+1$ and $X=\bigcup_{i=1}^{n+1} X_i$. For example, if $Q=\{X; \operatorname{Ind} X=0\}$ then $d_Q(X)=\operatorname{Ind} X$.

Note that because of the monotonicity of Q one has $d_Q(Y) \le d_Q(X)$ for $Y \subset X$, i.e. d_Q is monotone.

Let us denote $S = \{X : \text{ind } X = 0\}.$

THEOREM 3. If Q is a subfamily of S satisfying wst then $Q \subset \{X; \text{Ind } X = 0\}$ (thus Ind $X \leq d_Q(X)$).

PROOF. Suppose that $R \in Q$. If there would be $\operatorname{Ind} R > 0$ then defining $X_n, n = 0, 1, \cdots$ and X as in Section 2 (note that Q is topologically closed and monotone, thus the onepoint set $X_0 = \{x_0\}$ belongs to Q) one obtains as in Theorem 1 that the metric space $X = \bigcup_{n=0}^{\infty} X_n$ satisfies ind X > 0, where $X_n \in Q$ are closed and disjoint subsets of $X, n = 0, 1, \cdots$. Since $Q \subset S$ one has $X \not\in Q$. But then Q does not satisfy wst. Thus $R \in Q$ implies $\operatorname{Ind} R = 0$.

5. Property wst and the equality of P-ind and P-Ind

In this section property wst and the equality P-ind = P-Ind will be investigated. We recall first the following:

DEFINITION ([1] and [4]). Let P be a non-empty topologically closed family of metric spaces. We put P-ind X = -1 (P-Ind X = -1) if and only if $X \in P$.

We define P-ind $X \le n$ (P-Ind $X \le n$) if and only if for every $x \in X$ (for every closed subset A of X) there exist arbitrarily small neighbourhoods U of X (of A) such that P-ind $B(U) \le n - 1$ (P-Ind $B(U) \le n - 1$). Finally, we put P-ind X = n (P-Ind X = n) if P-ind $X \le n$ (P-Ind $X \le n$), but (P-Ind $X \le n - 1$) does not hold.

THEOREM 4. If P is a non-empty topologically closed family of metric spaces such that closed subsets of spaces belonging to P also belong P (i.e. P is monotone relative to closed subsets or closed monotone) and if P-ind satisfies we then for every metric space X one has P-ind X = P-Ind X.

PROOF. By the definition of P-ind X and P-Ind X one has P-ind $X \le P$ -Ind X. Now, suppose to the contrary that there exists a metric space R such that P-ind R < P-Ind R. We shall show by induction on P-ind R that P-ind does not satisfy wst. We note first that P-ind X = -1 if and only if P-Ind X = -1. Suppose that P-ind R = 0 and P-Ind R > 0. Define the space $X = \bigcup_{n=0}^{\infty} X_n$ as in Section 2. Note that P-ind $X_0 = P$ -ind $X_0 \ge 0$. Then P-ind $X_n = 0$ for $n = 0, 1, \cdots$ and, as easily seen, P-ind X > 0 (thus P-ind does not satisfy wst). Indeed one has P-ind $X \ge 0$. Otherwise $X \in P$ and thus, since X_n for n > 0 is homeomorphic to R and is closed in X, one gets by the monotonicity of P (relative to closed subsets) that $R \in P$, contradicting P-ind R = 0.

Let us therefore assume that P-ind X = 0. Then as in the proof of Theorem 1 one has for sufficiently small neighborhoods G of x_0 that $B(G) \in P$. Since P is monotone relative to closed subsets (i.e., P is closed monotone), it follows that $B(G) \cap X_n = B(G \cap X_n) \in P$ for n > 0, contradicting (as in the proof of Theorem 1) the fact that P-Ind R > 0. It follows that P-ind R > 0, contradicting the assumption that R-ind satisfies wst. Suppose now inductively that if for $R \le n$ there exists a space R_k such that R = R-ind $R_k < R$ -Ind R_k , then R-ind does not satisfy wst.

Let R be a space such that n+1=P-ind R < P-Ind R. Define X as in Section 2. By [4, Theorem 3.3] P-ind is monotone relative to closed subsets. Hence exactly as before (in the case P-ind R=0) one obtains for sufficiently small neighborhoods G of x_0 that P-Ind $B(G) \ge n+1$. If also P-ind $B(G) \ge n+1$ for every sufficiently small neighbourhood G of x_0 , then P-ind $X \ge n+2$ and the theorem holds. Otherwise there exists $k \le n$ such that

$$k = P - \operatorname{ind} B(G) < P - \operatorname{Ind} B(G)$$

and again the theorem holds by the induction assumption.

REFERENCES

- 1. J. M. Aarts, A characterization of strong inductive dimension, Fund. Math. 70 (1971), 147-155.
 - 2. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.
 - 3. J. I. Nagata, Modern Dimension Theory, Amsterdam, 1965.
 - 4. T. Nishiura, Inductive invariants and dimension theory, Fund. Math. 59 (1966), 243-262.
- 5. M. Reichaw, On a theorem of W. Hurewicz on mappings which lower dimension, Colloq. Math. 26 (1972), 323-329.
- 6. P. Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117-132.

- 7. E. K. Van Douwen, The small inductive dimension can be raised by adjunction of a single point, Indag. Math. 5 (1973), 434-442.
- 8. T. Przymusinski, A note on dimension theory of metric spaces, Fund. Math. 85 (1974), 272-284.

DEPARTMENT OF MATHEMATICS
TECHNION—ISRAEL OF TECHNOLOGY
HAIFA, ISRAEL